Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306502

RESUMEN

BACKGROUND: Equitable representation of members from historically marginalized groups is important in clinical trials, which inform standards of care. The goal of this study was to characterize the demographics and proportional subgroup reporting and representation of participants enrolled in randomized controlled trials (RCTs) of antibacterials used to treat Staphylococcus aureus infections. METHODS: We examined randomized controlled registrational and strategy trials published from 2000-2021 to determine the sex, race, and ethnicity of participants. Participation to incidence ratios (PIRs) were calculated by dividing the percentage of study participants in each demographic group by the percentage of the disease population in each group. Underrepresentation was defined as a PIR <0.8. RESULTS: Of the 87 included studies, 82 (94.2%) reported participant sex; 69 (79.3%) reported participant race; and 20 (23.0%) included ethnicity data. Only 17 (19.5%) studies enrolled American Indian/Alaskan Native participants. Median PIRs indicated that Asian and Black participants were underrepresented in RCTs compared with the incidence of methicillin-resistant S. aureus (MRSA) infections in these subgroups. Underrepresentation of Black participants was associated with a larger study size, international sites, industry sponsorship, and Phase 2/3 trials compared with Phase 4 trials (P<0.05 for each). Black participants had over 4 times the odds of being underrepresented in Phase 2/3 trials compared with Phase 4 trials (OR 4.57; 95% CI 1.14-18.3). CONCLUSIONS: Standardized reporting methods for race and ethnicity and efforts to increase recruitment of marginalized groups would help ensure equity, rigor, and generalizability in RCTs of antibacterial agents and reduce health inequities.

2.
Antimicrob Agents Chemother ; 66(3): e0207121, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35041506

RESUMEN

Increasing antimicrobial resistance and medical device-related infections have led to a renewed interest in phage therapy as an alternative or adjunct to conventional antimicrobials. Expanded access and compassionate use cases have risen exponentially but have varied widely in approach, methodology, and clinical situations in which phage therapy might be considered. Large gaps in knowledge contribute to heterogeneity in approach and lack of consensus in many important clinical areas. The Antibacterial Resistance Leadership Group (ARLG) has convened a panel of experts in phage therapy, clinical microbiology, infectious diseases, and pharmacology, who worked with regulatory experts and a funding agency to identify questions based on a clinical framework and divided them into three themes: potential clinical situations in which phage therapy might be considered, laboratory testing, and pharmacokinetic considerations. Suggestions are provided as answers to a series of questions intended to inform clinicians considering experimental phage therapy for patients in their clinical practices.


Asunto(s)
Bacteriófagos , Terapia de Fagos , Ensayos de Uso Compasivo , Farmacorresistencia Bacteriana , Humanos
3.
J Leukoc Biol ; 103(4): 739-748, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29345365

RESUMEN

Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Eliminación de Gen , Macrófagos/inmunología , Mycobacterium bovis/inmunología , Serina Proteasas/deficiencia , Tuberculosis/inmunología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Linfocitos T CD4-Positivos/microbiología , Células Cultivadas , Células Dendríticas/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Serina Proteasas/genética , Serina Proteasas/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología
4.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29133346

RESUMEN

Mycobacterium tuberculosis successfully subverts the host immune response to promote disease progression. In addition to its known intracellular niche in macrophages, M. tuberculosis interferes with the functions of dendritic cells (DCs), which are the primary antigen-presenting cells of the immune system. We previously showed that M. tuberculosis dampens proinflammatory responses and impairs DC functions through the cell envelope-associated serine protease Hip1. Here we present data showing that M. tuberculosis GroEL2, a substrate of Hip1, modulates DC functions. The full-length GroEL2 protein elicited robust proinflammatory responses from DCs and promoted DC maturation and antigen presentation to T cells. In contrast, the cleaved form of GroEL2, which predominates in M. tuberculosis, was poorly immunostimulatory and was unable to promote DC maturation and antigen presentation. Moreover, DCs exposed to full-length, but not cleaved, GroEL2 induced strong antigen-specific gamma interferon (IFN-γ), interleukin-2 (IL-2), and IL-17A cytokine responses from CD4+ T cells. Moreover, the expression of cleaved GroEL2 in the hip1 mutant restored the robust T cell responses to wild-type levels, suggesting that proteolytic cleavage of GroEL2 allows M. tuberculosis to prevent optimal DC-T cell cross talk during M. tuberculosis infection.


Asunto(s)
Chaperonina 60/metabolismo , Células Dendríticas/inmunología , Interacciones Huésped-Patógeno , Evasión Inmune , Mycobacterium tuberculosis/inmunología , Tuberculosis/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Proteolisis , Tuberculosis/microbiología
5.
PLoS Pathog ; 13(8): e1006530, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28767735

RESUMEN

Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB.


Asunto(s)
Antígenos CD40/inmunología , Ligando de CD40/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Tuberculosis/inmunología , Animales , Técnicas de Cocultivo , Células Dendríticas/microbiología , Modelos Animales de Enfermedad , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/inmunología
6.
PLoS Pathog ; 10(5): e1004132, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24830429

RESUMEN

Mycobacterium tuberculosis (Mtb) employs multiple strategies to evade host immune responses and persist within macrophages. We have previously shown that the cell envelope-associated Mtb serine hydrolase, Hip1, prevents robust macrophage activation and dampens host pro-inflammatory responses, allowing Mtb to delay immune detection and accelerate disease progression. We now provide key mechanistic insights into the molecular and biochemical basis of Hip1 function. We establish that Hip1 is a serine protease with activity against protein and peptide substrates. Further, we show that the Mtb GroEL2 protein is a direct substrate of Hip1 protease activity. Cleavage of GroEL2 is specifically inhibited by serine protease inhibitors. We mapped the cleavage site within the N-terminus of GroEL2 and confirmed that this site is required for proteolysis of GroEL2 during Mtb growth. Interestingly, we discovered that Hip1-mediated cleavage of GroEL2 converts the protein from a multimeric to a monomeric form. Moreover, ectopic expression of cleaved GroEL2 monomers into the hip1 mutant complemented the hyperinflammatory phenotype of the hip1 mutant and restored wild type levels of cytokine responses in infected macrophages. Our studies point to Hip1-dependent proteolysis as a novel regulatory mechanism that helps Mtb respond rapidly to changing host immune environments during infection. These findings position Hip1 as an attractive target for inhibition for developing immunomodulatory therapeutics against Mtb.


Asunto(s)
Proteínas Bacterianas/fisiología , Chaperonina 60/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Mycobacterium tuberculosis/enzimología , Serina Endopeptidasas/fisiología , Serina Proteasas/fisiología , Animales , Proteínas Bacterianas/metabolismo , Células Cultivadas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Unión Proteica , Multimerización de Proteína , Proteolisis , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...